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FOURIER INTEGRAL METHODS OF PATTERN ANALYSIS

Abstract
The source of radiation f(r) and its amplitude pattern g(kc) are a
pair of Fourier Transforms, f(r) - g(0), where g(k) W= f(r)eik-rdV
and f(r) O J'g 0() e-IkrdO. If eoch point of fl (r) spreads out Into
a function f,(r), the resultant source is the convolution (Faltung),
f 2 (r)*f,(r), while Its pattern is the product g 1 (k)g 2 (k). By means
of this theorem the solution of various problems can be written down
by Inspection. For the mattress array, f,*f 1*f 2 *f,4g"gglgg1 where
fo is the polarization and fl, fg, fs are the linear arrays along the
three edges. Other problems are: (a) Two Identical antennas, (b) Bino-
mial distribution of points, (c) Uniform distribution of points (grat-
ing) , (d) Trapezoidal or triangular distribution, (e) Effect of a linear
phase error. Series Expansions: g(u) = 24kuk/k! where u = (2n/X)sin 0
and Ikm £-Z xkf(x)dx. From this is derived the beam width W (in
radians) for n db down on the main lobe. W - A Y(i - Bn)\/d where
A - 0.152d 1(4o/p,, B = (I - opri4/392)/34.7 and d = 2a. For uniform
Illumination, ýLk f= 2/(k+l) and W = 0.529 V(i - n/86.8)X/d, correct
to a 0.5% in W down to 25 db.
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A. INTRODUCTION

1. Purpose and Scope of Report

The development of high gain antennas for microwaves has brought
into existence problems which resemble those in optics. Although
the exact solution must be in agreement with electromagnetic
theory, the simpler scalar theory of physical optics or sound is
sufficient for many problems, particularly when the overall dimen-
sions of the antenna contain several wavelengths. Since the
radiation pattern of an antenna at a large distance can be ex-
pressed as a Fourier integral of the currents over the antenna, it
is natural that certain theorems concerning the Fourier Transform
are found to be useful in yielding short-cut solutions. These
three dimensional theorems, when reduced to one dimension, are
analogous to those of the Operational Calculus which has long been
used in electrical circuit theory.

The present paper* is the first of three sections on Methods of
Diffraction Pattern Analysis by the author and co-workers. Follow-
ing an elementary introduction, several Fourier Integral Theorems
are developed which form the basis for a number of short-cut
methods. These are illustrated by numerous practical examples
which include the effect of linear phasing and polarization.
Section II lists tables of functions which are particularly useful
in calculating the diffraction patterns of linear arrays. Opera-
tional methods are extended to solve for the effect of phase
errors across the aperture on the diffraction pattern. Section III
deals with the scattering cross section of various shaped objects.

2. Analogy between Nicrowave Antennas-and Optical Reflectors

In this section it is assumed that the reader is familiar with
geometric optics and with Huygens' wave theory as presented in the
usual college textbook. The representation of phase angle qp as a
rotating vector, e1•, is a useful concept in studying interference
and diffraction, while the concept of radiation from a dipole is
essential in any electromagnetic problem.

Figures 1 to 4 illustrate a number of microwave antennas whose
action Is explained by elementary optics. In Fig. 1, rays which
start from the focus of a paraboloidal reflector are reflected
parallel to the axis, according to the laws of geometric optics.
Thus, the use of paraboloidal reflectors in flash lights, search
lights, reflecting telescopes, sound detectors and reflectors for
microwaves, is based on the assumption that geometric optics Is
valid. Although geometric optics is simple to apply, its justifi-
cation and its limitations depend upon the more fundamental
Huygens' wave theory which is illustrated in Fig. 2. Huygens'
Principle also explains the formation of a cylindrical wave from
an array of point sources, (Fig. 3a) and the formation of a plane
wave from a broadside array (Fig. 3b). The paraboloid and the
parabolic cylinder, two types of reflectors commonly used in
microwaves, are compared in Fig. 4. In Fig. 4b a linear array of

762_1 1
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Figure 4. Comparison of (a) Paraboloid of Revolution and
(b) Parabolic Cylinder.
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dipoles FF, placed at the focus of the parabolic cylinder, emits

a cylindrical wave which is reflected as a plane wave.

B. POINT SOURCES

i. Radiation from a Point Source

The intensity of a wave in three dimensional space at a large
distance R from a small source, varies according to the usual

inverse square law, while the amplitude2 varies as 1/R. An actual

source may be a collection of point sources or an equivalent con-

tinuous distribution of point sources placed at a reflector.

In the case of longitudinal waves such as sound, the typical point

source is a tiny sphere whose radius pulsates so as to emit a
spherical wave. Surfaces of constant amplitude ire spheres con-
centric with the source.

In the case of electromagnetic waves which are transverse waves,

the electric field E, the magnetic field H and the direction of

propagation are perpendicular to each other. The typical point

source is a dipole which may be considered to be a very short wire

of length L carrying a sinusoidal current of I amperes. At dis-

tances large compared to X/2n, where X is the wavelength, the

electric field in volts per meter is given by: 0

E 6- t IL sin V ()

X R

T4 is the angle between the line of sight and the dipole, and R

is the range in meters. The ratio L/A is assumed small. When a

collection of dipoles have parallel axes it is possible to treat

them first as point sources, inserting the polarization factor
sin W at the end.

The motion of a vibrating sound source, or the current in a
radiating dipole, may be represented by one coordinate of a point
which moves in a circle with a uniform angular velocity, w = 2nf.

This is represented by a vector which has turned through a phase

angle T = wt. which is equivalent to multiplication by e

2. Radiation from a Collection of Point Sources p

0
-× / Z

Fig. 5 Source point at A. Field point at P.
The range relative to the origin is

AR h,
762-1 3



In Fig. 5 the typical point source A is a distance r from the
origin and a distance R from the field point P which in turn Is a
distance Ro from the origin. Since the radiation travels from A
to P in the time R/c, the phase at P is retarded by an amount wR/c.
The field at P due to a number of such point sources will be, ac-
cording to Huygens' Principle, the sum of the individual fields84.

Z R elw(t-Vc) (2)

If we let R Ro-AR and take out the factor common to all terms,
(2) becomes

W C-tio(t-R/c) An eiwA/c
R- \ 4 4 (3 )

The external factor represents a spherical wave traveling outward
with a velocity of light, since the phase is constant if Ro = ct,
and the amplitude dimishes as I/R 0 . A small section of the
spherical wave may be considered part of a plane wave vith a
normal 6 in the direction OP. Henceforth we shall omit the ex-
ternal factor and consider only the contribution within the sum-
mation sign, which is proportional to the amplitude of the re-
sultant plane wave. As Ro becomes sufficiently large the ratio
AR/R 0 in the denominator becomes negligibly small, but the AR in
the exponent must be retained as the phase p relative to the
origin Is not small.

S- w &R = Rf - 2n AR (4)
c C1

An approximate value of AR is the component of F in the direction
of A as shown in Fig. 5

AR - r cosy F-f (5)

(F.- is the scalar product of the two vectors F and R, while y
is the angle between them). If .he phase change per unit length in
the direction of E is designated by the vector propagation con-
stant r, then (4) reduces to

T-2,nii - (6) 2-

and the field (3) is proportional to a function of re

g(k) -YAnelr (7)

Thus, the amplitude of the equivalent plane wave at a unit dis-
tance from the origin Is g(k), which Is the sum of the Individual
phase vectors, weighted according to the strengths of the source
points.
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3. Examples of Diffraction Patterns'Derived from Point Sources

We shall now consider the examples of isotropic point sources
illustrated in Fig. 6. By definition, a unit (Isotropic) point

source placed at the origin (Case 1), radiates a unit amplitude

at a unit distance regardless of direction. Hence, g(k) = i.

When the point source is displaced a distance F, from the origin

as in Case 2, the phase angle is advanced by an amount p a•.F
=(2nrr/X)cosy. Note that p has the same value for all lines of

sight that make an angle y with i1. The locus of these directions
forms the cone Illustrated in Case 2.

When two equal point sources of equal sign (Case 3), or of op-

posite sign (Case 4), are placed at ±_ 1, the diffraction patterns

are respectively the sum and difference of two exponential terms.

Case 3. g(k)Weti'•t+e- A l=2cos 'e°•Fj=2cos q (8)

il-.FI -1 IL''
Case 4. g (W -e -e .21 sin Tc. 1

2 1 sin (p (9)

One must remember that for any arrangement of point sources along

a lines the pattern is identical over the cone of directions

shown in Case 2.

The diffraction pattern for the uniform line source (Case 5),
extending from -i& to T1,, may be obtained by integrating the

patterns of a uniform density of point sources of the type of

Case 2.

g (N) 1 eirdr = /
2 sin 92 sin P (10)

Iklcos y 9

This is the diffraction pattern of a single slit commonly derived

In optics. Other examples of point sources will be taken up after

the discussion of the properties of Fourier Transforms.

C. THE SOURCE AND ITS PATTERN AS A PAIR OF FOURIE TRANSFORMS

i. General

We will now proceed to show that the source function and Its

diffraction pattern are Fourier Transforms. Let us designate the

source function by f•r). This may either be the set of source

points (Anrn] described above or a continuous function f(i)

of the position vector r. The amplitude diffraction pattern (7)

now takes the form of a Fourier Integral e,7

"The term diffraction pattern as employed in optics is here used
interchangeably with the term radiation pattern which is employed
in radio.
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f (F) - [An?%] g~k - ZA, e tk -r

Case 1. Unit Point Source g T)- 1
at the origin

Case 2. Unit Point Source
at F - f

- 4i-r eq

0A k kr~cosy -(2itr,/X)cosy

Case 3. Two Point Sources,
+1 at Fl., +1 at -F 3

ti2

g(k) +ekr +e i 2 cos qi

Zeros for (p n i/2, 3nI/2, etc.

Case 4. Two Point Sources,
+1 at fls, -1 at-F1

g(i) eik-Fl - elkiup 2 1sin 4p

Zeros for (p - 0, nt, 2n,~ etc.

Case 5. Uniform Line Source
f r o m -F , t o + ?F. 

f T/ I r 2

g (To) eiifrrl - 2-r, sin

Zeros for im - n, 2nr, 3nr, etc.

FIGURE 6~. DIFFRACTION PATTERNS OF ISOTROPIC POINT SOURCES



g () = ff (i) eili'dV (11)

The integration is carried out over the volume occupied by the
source, the element of volume being dV.

As previously mentioned, g(ý) may be considered to be the ampli-
tude of a plane wave emitted by the source in the direction of
R or r. If we reverse these waves they will, by the principle of
reversibility in optics, retrace their paths exactly, converging
to the source function f(F). Thus, we may represent f(M) as the
sum of plane waves.

f(F) fg ()ei- rd (12)

The integration is carried out over the surface of a unit sphere,
the element of solid angle being do. Note that the k in the phase
factor is reversed because of the reversal of direction. We have
here ignornd a normalization factor on the right side of (12).

Equations (11) and (12) are symmetric in their mathematical form
and are known as a pair of Fourier Trans frms. This fact is some-
times denoted by the double arrow symbol

Again, the statement that " g(R) Is the Fourier Transform of f()

may be denoted by

g(•) = T fr() (14)

2. Fourier Transforms in Various Coordinate Systems

When the amplitude function is known over a simple geometric
surface such as a sphere or a cylinder, it can be expanded in a

series of orthogonal functions, each of which has its own Fourier
Transform. These are given by Strattone.

The case of rectangular coordinates is quite simple. Let the
amplitudes of the i, J and k components of the vector r be u,
v and w. If x, y and z are the corresponding components of r,
the phase becomes

T T.- 0 (ui+vJ+wk).(xiyj+zk) = (ux+vy+wz) (15)

The volume element dV Is dxdydz while the volume element in
diffraction space, assuming a variation in wavelength, becomes
dudvdw/(2n)o. If we divide the numerical factor (2n)-n into two
symmetrical factors (2n)-n/2 we arrive at the usual three dimen-
sional transformse

(U.v2w/ f/ff f(xr,y,z)eiI(ux+vy+wz)dxdydz (16)

762-1 7



f (xyZ)/// g(u v,w)e-1(Uxfvy+wz)dudvdw (17)
(2()1 Al

In case f(x~y~z) has zero thickness in the i,j ur k direction

g(uv,w) will be independent of the corresponding ui,v or w vari-

able due to the fact that this variable vanishes from the ex-

pression for the phasej M15). Thus, in the case of two dimensions,

which is particularly useful for broadside arrays

g(1,v) = I_ f f (xy)e I("x+vY)dxdy (18)
2n

f(Xy) = -Lf g (61,v) e-i ("x +vY) dudv. (19)

In the case of one dimension, used in the analysis of linear
arrays

g(u) u f f(x) eLuXdx (20)

f(x) = Jg (60e-iLuxd, o (21)

Usually in antenna problems we wish to keep the frequency constant
which imposes the condition that

u + v + w k! (22)

This condition restricts the diffraction space to the surface of

the sphere mentioned in connection with the inverse transform (12).

Againp we may wish to keep the direction fixed and merely vary the

frequency. In case the direction Is along the x-axis, the one

dimensional problem reduces to the frequency spectrum g(w) of

a transient N(t) as treated in electrical circuit theory . There

is a change of scale arising from the relationships q = ux a wt,

x • ct.

g (W) . • f(t)eiwtdt (23)

1

f(t) . 1 -j/g(w)e-itotdw (24)

The normalization constants for any of the above equations are

chosen so that there Is conservation of energy or conservation of

power in both the source space and diffraction space.

B 76-21



f IfJ'dV f fgj['dr 125)

3. Effect of ScaLing

If the amplitude of a function f(x) is multiplied by the factor
a while it Is made narrower in the same ratio so as to preserve
Its area, its Fourier Transform will be simply broadened by the
factor s, while its peak is unchanged. In mathematical notation,
let

f(e) g (u) (26)

then sf(sx) -W-- g(u/s) (27)

To prove this, let ex =xV and u/a = u', then ux = u'x'. The
Fourier Transform of sf(sx) is

1 / sf(sx)eiuXdx - I f f(x')eiu'x'dx- g(u')

which proves (27). This principle may be applied to any of the
three dimensions independently.

4. Fourier Transforms of Even and Odd Functions

Since Xul- cos ux + 1 sin ux, g(u) can be written In the form

aa
(U) -- 1_. f(x) cos ux dx + If f(x) *in ux dx

Sa-a

- ge(u) + Ig0 (u). (28)

The first integral is zero for an odd function and therefore
applies only to an even functions fes while the second applies
only to an odd functions f.e The presence of the i Indicates that
the two transforms are 90A out of phase. This was discussed in
more detail 1 in R.L. Report T-7* It follows that the power
pattern is the sum of squares of the individual patterns.

P(u) ag(u) 1(u) (ge+lgo) (ge-lgo) - get+ got (29)

This Is a real positive function with no zeros since ge and go
are unlikely to have coincident zeros.

It will be the policy In the remainder of this paper to use
particular coordinate system only when they simplify the problem.

782-1 9



5. Fourier Transform of the Complex Conjugate

The power P(k) in the diffraction pattern is of practical im-
portance in antenna theory and measurements. This Is the square of
the absolute magnitude of g(k) or the product of its complex
conjugates.

P () - Jg(T)1 2 = g)(T)o( (30)

Now, to find the complex conjugate ^(TE) we simply replace the
quantities in (11) by their complex conjugates which includes
reversing the i in the exponent. Thus,

2 (T) =If(i)e-iF dV (31)

We may make the exponent positive again by reversing all k's or
reversing all r's. These changes lead respectively to the trans-

forms

? (-;) i_• (TC) (32)

6. Effect of a Linear Phase Change

Let g (T) be the diffraction pattern when the source function
f1.(•) is real, I.e. all source points are vibrating In phase. The
effect, then, of exciting them by means of a plane wave of wave-
length Xo traveling in the direction Rop is to introduce a linear
phase lag go at each point (See Fig. 7).

no

OB 2 B

"A

C

Fig. 7. Path Difference when Excited by Plane Wave

OCOB1 F -= .

gno = 2n 0-- = 2 F- o = F.1o 0  (33)

We then have a complex source function

f(F) = e (7) (34)

10 762-1



-eh results in the diffraction pattern

_ff f(-;i~ vrlr (ii

9 (a r eir- dV- f ,(r- e ' "0 dY .g(ri-ri) (86)

By addin o to each abscissa, we obtain

g (Tr+co) g I2 ( -). (36)

Thus, the effect of a linear phase error Is to shift each point in
the diffraction pattern g1 (k) from the direction associated with
k to that of (1+2o). This theorem for three dimensional space
corresponds to the Heaviside shift theorem in the operational
calculus of electric circuits.

In the case of a linear array excited by a wave traveling along
the wave guide, the phase p Is shifted by an amount v. = 2nri/Xg,
where X i9 s the wave guide wavelength. Thus, the resultant
diffraction pattern is a new function of T,

g(4) - g 1 ((P-q) (37)

where gl(;) is the pattern for an array in phase. (We are here
using g(•) and g(Q) interchangeably although they really are
different due to the scale factor between q and E). Since gl(T)
has a maximum when 9 Is zero, g(V-p0o) will have a maximum when
(p-yo) =0, or when

cos y - X L (38)

V Is the velocity In the guide. This is illustrated in Fig. 8a
wfere a wavelet travels a distance OA in the guide while it is
traveling a distance OB outside. The line AB is a common wavefront
for all wavelets along the guide. The same construction Is used to
explain the critical angle at the boundary of a dielectric,

bow waves from boats on the water, or the shock waves from bullets
the air, Fig. 8c.

BOAT OR
BULLET-

GUJIDE- YT T' AIRA
AIR 0-

Ray W6Ave
OtretLon Wav

-1Froont
BBB

(a) WAVE GUIDE (b) CRITICAL ANGLE IN GLASS (c) BOW WAVES FROM
BOAT OR &SLLT

Fig- S11 iNygeus* Wave Construction for Linear Phase Zrr,.',
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If X Z Xg, then the peak intensity occurs when y is zero and the
result is an end-fire array. An interesting example of an end fire
is the case of two point sources with a spacing, d - X/4 and with
a phase difference of n/2, or ± n/4 from that of the origin. The
solution is to shift the curve gi(p) o cos ( to the right an
amount q•P 1/4, so that the peak value occurs at y = 0, and the
first ans only zero at y = 1800.

D. TM CONVOLUTION THROREM

i. Derivation of fe fR7 ± gSga

The convolution theorem, known in mathematics as the Parseval
theorem, is a powerful tool for solving many diffraction problems.
The followini derivation for three dimensional space holds equally
well for one or two dimensions. Let us consider the two source
functions f1 Cr) and ft(1) of Fig. 9.

fr () M [anrn] () - [%(b ] (39)

Thus, f 1 (r) is a "set* of source points with weights an and
position vectors in in three dimensional space, while ft 6) has
weights b. and position vectors ii. Note that the square bracket
Is employed for a *set* Instead of the I which would have denoted
a GSum

The convolution of f, and f,, also termed the resultant or the
*Faltung' (folding), consists of spreading each point of one
of the functions out Into the other function. This Is illustrated
In Fig. 3oa. Thus, the point anfn is spread Into the series
an[bm(!n+÷m)] while the convolution f is given by

f t1' f* -(an [bm(7n+Fm)] (40)

The star between two functions indicates their convolution. This
Is symmetrical with respect to f , and f,, the typical term having
a weight anbm and a position vector rn*Sm) - (See Fig. JOb).
Substitution of these values in (7) yields the diffraction pattern

g -I n braeIk (ni 4)

But this Is Identical with the product of the transforms of
f, and f,,

1 , (2E (42)

Since In either case the typical term Is anbme .-0n+sm)- Thus
we arrive at the convolution theorem which states that the trans-
form of the convolution is the product of the transforms.

r, ft g (43)

22 Mg-



02

0 b3

(a) f.1 () = [an rn] (b) f 2 () =(

Figure 9. Point functions f,1 () and f2 (9), where F and R are
position vectors in three dimensional space.

On bm

//M

o,21-2 -v '.

Figure 1Oa. Convolution of f, and f2 Figure lob. Typical term in convolution.
f M fief2 Weighted points anbM at

position F n + gw-

FIGURES 9, 10. CONVOLUTION OF POINT SOURCES IN SPACE

762-1 13



This theorem holds equally well for continuous functions. It is
quite apparent that we may form the convolution of a third func-
tion f3 with f, vthich is already the convolution of f, and f 2.
Again, the order of operations is immaterial.

n1.293 (441fjý f2* fg* • fn-i*fn •-- g-~s • gn

Due to the symmetry between the f and g functions, the above
convolution properties hold if we interchange the f's and g's.

fift - g1 g, (45)

The convolution theorem is so simple that frequently by the time
one has clearly stated the problem the solution can be written
down. Numerous illustrations of the method are given later in
the paper.

2. Integral Representation of the Convolution

We shall now derive a mathematical expression for the convolution.
Let us change notation, replacing F by fl, i by i2, lett-ng r
stand for the vector sum (I+F). We now allow the volume
element f1 (• 1)dV 1 , considered as a mass point, to spread out into
the function f9 (r2). The convolution f(i) is the integral over
all such elements of volume.

f( a) = f l (- 1 ) * f 2( G;) f f l ( G;) f 2( rF ) dV(
V1 (46)

= f f (rIL) f2 (r;-rj) j

If the functions were constrained to one dimension we would have

the usual expression for the convolution of fj(x) and ft(x)

f(x) - fi(x) 0 , (x) =/f f(a) f2 (x-a)da (47)

where a Is a variable of integration.

3. The Parseval Formulas. Conservation of Energy

Writing (46) as the transform of gig2

Ifr (Is) f2 (7-rl) dV1 = /g. (r) g2 (M) e-i €'rdO (48)

If 0

ffj(Fdf 2(-7,) dVs -ff f g, (Tcda

Now let f, (-re) = fl(-r,), whereupon g, (6) becomes g, () according
to (32).
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Dropping the subscript 1,

(f)?(f)dp = f g (ribi( o-
or

offi 2 dp-- fIg()0 2 dar (49)

The above Parseval formulas are usually developed in the lit-
erature for one dimension only. Eq. (49) is really a statement of
the conservation of energy between the source space and diffrac-

tion space, or between antenna primary patterns and secondary
patterns.

4. The Power Diffraction Pattern as the Transform of

In most measurements and experiments involving diffraction pat-
terns, the phase of the pattern is not detected, only the power
P(O) = g(7i)*(1) being significant. But according to (30), (32) and
(43), P(T) is the transform of the convolution of f(f) and ?(-r)
showing that this is the significant characteristic of the antenna

fa() *(-) = g (r) A(r) = P () (50)

The same equation is obtained from the Parseval Formulas (46, 48)
by substituting g(k) for g1 (K) and f(k) for g,(i).

E. EXAMPLES OF CONVOLUTIONS IN SPACE

z. Effect of a Displacement

The effect of a displacement of the origin of a source function
fl(r) to a position To can be considered to be the convolution of
ro and f1 (j)

f(i)= fI (r-to) = ro f( (81)

The resultant diffraction pattern is then the product of the two
patterns

g(rk) = e'R'Fo g. (E) (82)

Note that this introduces a linear phase error Into the diffrac-
tion pattern.

2. Effect of a Linear Phase Error

This effect, discussed earliers is the same as the above example
with the roles of f and g, and those of i and i reversed. The
resultant source function is the product

f (i) = e-Zf-ro fr (i)

while the resultant diffraction pattern is that derived earlier
by a direct method. (See (38).

g (re) = g, (rc-7o) (152a)
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3. Effect of Polarization

If the currents in an antenna are all pirallel we may consider
that each scalar point has been spread out into a dipole. The
resultant source function is the convolution of the scalar source
functioh f Ur) and the dipole, so that the diffraction pattern is
the product of the scalar diffraction pattern and the factor
sin W of (1).

4. Broadside Natitress Type Array

The mattress type array of Fig. 3b consists of two rectangular
layers of equally spaced dipoles with their axes parallel and with
corresponding dipoles in the front and back layers arranged for
end-fire. If all dipoles are equally excited, the mattress is the
convolution of four functions, the polarization fo and the three
linear arrays along the three edges. The diffraction pattern is
therefore the product of the four patterns according to (44).

fo0e*f, *f2 0f3 .D- gog1g2g3 (53)

This equation applies to a much wider class of antennas than the
conventional mattress type, since the individual axes may have any
orientation, and the spacing, amplitude and phase along any one
linear array may be arbitrary. The case of a three dimensional
grating with inclined axes is treated by Stratton. 1"

5. Two Identical Antennas

The arrangement of two identical antennas placed with centers at
± ?2 Is simply the convolution of one of the antennas with two
points located at + i,. The diffractiorn pattern is then the
product of the pattern gS 1() for one of the antennas and the
Interference pattern for two point sources, either in phase, as
in Case 4., (Fig. 6),or with an arbitrary phase difference (o due
to the length of feed line. If we also include the polarization
factor we can write the complete pattern as the product of three
factors

g(i' = g1 (R) cos(r-F2-Po) sin W (54)

The next paragraph discusses a special case.

6. Double Slit Source Considered as a Convolution

The double slit source of optics, illustrated in Fig. 11j can be
considered to be the convolution of a pair of points situated at
+± and a single slit of width 2b. The over-all diffraction pattern
is the product of the two patterns 2 cos au and 2(sin bu)/u
illustrated in Fig. 6. It is recalled that the first factor is
unity when au is a multiple of n or when the path difference
(2a sin 6) =(2a cos y)between centers is a whole number of wave-
lengths, so that the two sources are in phase. The second is zero
when bu is a multiple of n or when the variation in path length
(2b sin 6) over a single slit is a whole number of wavelengths.
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S2a

I IDiffraction Patterns For:
f 2b- Two Point, g, (u)2 coo au

S~u

oU

I STwo Slits g'(u)= g1L g 2

4 cos au sin bu
'ii U

Fig. 11. Double Slit as the Convolution
of Two Points and a Slit

7. Double Slit as the Difference of Two Slits

An alternate method of attack is to make use of the fact that
Fourier Transforms are linear transformations, i.e. the transform
of a sum of functions is the sum of their transforms.

f 1 (x) + f 2 (x) +... " g 1 01) +-.- 92(U) +... (55)

Fig. 12 shows how the difference of two slits of widths 2(a+b) and
2(a-b) is equivalent to the double slit of Fig. 11 The corres-
ponding diffraction patterns in the two figures are also equiv-
alent since they are trigonometric identaties.

2(a+b)
g(u) _ 2 sin(a+b)u 2 sin(a-b)u

POSITIVE u u

= 4 cos au sinbU

u
2(a-b)

Fig. 12. Double Slit as the Difference of Two
Slits of Widths 2(a+b) and 2(a-b)
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F. CONVOLUTIONS OF PAIRS OF POINTS IN ONE DIMENSION

1. Successive Convolutions of Pairs of Points

Fig. 13 illustrates successive convolutions of pairs of points in
one dimension. The top row shows one pair at ±a with a diffraction
pattern cos au. The next row shows its convolution with a second
pair of points at ± S, the resulting pattern.being cos au cos bu.
The third row is the convolution of the second row with a pair of
points at ± Z, the pattern being cos au cos bu cos cu. This
process may be continued indefinitely.

The final pattern is zero whenever one of the component patterns
is zero. If g, 1 and F differ slightly, their first zeros differ
slightly so that the pattern is almost zero over a range of
angles. The pattern can become unity at a point other than the
origin only if a, S and Z have simple integral ratios. Thus, the
presence of side lobes due to equidistant supports can be reduced
only by a careful study of vaziable spacing.

2. Binomial Distribution of Points

Fig. 14 shows the binomial distribution of n points resulting
from (n-i) successive convolutions of a pair of points with
itself. Thus, a = b = c etc. The points are equally spaced and
their amplitudes are the binomial coefficients for terms in the
expansion of (+l1)n/ 2 n. The diffraction pattern is simply cosnau.
The position of the zeros and of the points where the pattern is
unity is the same regardless of n. If the spacing 2a equals or
exceeds X, strong higher orders are formed as In the case of the
diffraction grating. When 2a is less than X/2 the diffraction
pattern is a monotonic decreasing function approximating a Gauss
Error curve, but the array is too weakly illuminated near the
ends to be practical.

3. Grating of 2 n Points (Fig. 15)

Again, if b = 2a, c = 2b, etc. we find that (n-i) convolutions
produce a diffraction grating of 2 n points of equal amplitude
equally spaced. The resulting pattenn is

g(u) = cos au cos 2au cos 4au etc. (56)

Since a high density of points is equivalent to a uniform line
source, it follows that the pattern for a uniform line source of
width 2w can be expressed as an infinite continued product.

sin wu cos wu cos wu cos wu

u 2 4 t

4. Grating of n Equal Points as a Convolution (Fig. 16)

A simple derivation of the diffraction grating formula"is obtain-
ed as follows. Let fn(x) designate an array of n equidistant point
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Types of f(X) g (u)

2 -- cos au

cos au cos bxi

cos au cos bu cos cu
W&2 b IP 2C 2c*

Figuire 13. Successive ýonvolutions of Pairs of Points
Separations 2a, 2b, 2c, etc.

2
Cos au

3
c os all

Figure 14. Binomial Distribution
Separations a = b = c, etc.

cics au

cos a'a cos 2au

co .u Cos 2au cos 4au

Figure 15. Uniform Grating of 2 Points
Separations b - 2a, c = 2b, etc.

-" 2wf2no gn (u) sin au sin wui

g n ( u) s in W1 s 1 -

Figure 1. Diffraction Grating of n Points

FIGURES 13 - 16. CONVOLUTIONS OF PAIRS OF POINTS
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sources of constant amplitude separated by intervals 2a. Then let
each point be spread into a slit of width 2a. The result is one
long slit of width 2w = 2na, the diffraction pattern of which is
(sin wu)/u = (sin nau)/u. But the long slit was formed from the
convolution of the point pattern fn(x) and the single slit of
width 2a, so that the resultant pattern can also be expressed as
the product of the point pattern gn(u) and the single slit pattern
(sin au)/u. On equating the two expressions,

gn(u) sin au sin nau

u u (57)

Hence

gn(u) = sin wu sin nau (58)
sin au sin au

This reduces to n when au is zero or a multiple of n. I.e. when
waves from adjacent openings differ by a whole number of waves.
The pattern is zero whenever wu is a multiple of n. This causes
(n-2) side lobes to appear between each of the strong peaks.
(See any optics text for Illustrations). Midway between the strong
peaks, the envelope of g,(u), which is 1/(sin au), is unity so
that the minimum side lobe has a relative amplitude of 1/n or a
relative intensity of (1/n) 2 . The corresponding intensity pattern
from the slit of width 2w would have been (2/n)2 as much, or
4 db lower.

5. Grating of n Equal Points as a Product

The diffraction grating can also be considered as an infinite
series of points with spacing 2a, which is observed through a
window that is transparent inside the limits + w and opaque out-
side. See Figs. 17, 18. Since f(x) is the product of two functions
the diffraction pattern is the convolution of their patterns
according to (46)

g (u) =f g1 (a) 92 (U-0 09)

Now the pattern for the Infinite grating degenerates to the series
of equally spaced points shown in Fig. 18, so that it acts as a
window of vertical transparent lines of spacing u = n/a. Thus, to
a first approximation, the pattern Is the single slit pattern
traced by the line nearest the peak. A. L. Patterson has applied
this point of view to the diffraction of x-rays by small crys-
tals.

II , I II II 1 II IIr aI nI i I

I ,, II II II I

Fig. 17. Orating as Product of Infinite
Grating and Window of Width 2w
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w+\

4u--

Fig. 18. Orating Pattern as the Convolution
of (sin au)/u and the series of
equidistant lines of separation

6. Grating with Finite Slits or Ditotes

Since an actual diffraction grating consisting of n slits of width
2b is the convolution of the point grating fn(z) and the slit of
width 2b, its diffraction pattern Is simply the product of (580 by
the single slit pattern (sin bu/u).

g(u) a gn(u) sin bu b sin nau sin bu
u sin au bu (00)

Lt the peak this reduces to nb which is the total opefting of the
grating. Obviously, any other pattern such as that of a dipole can
be substituted for the pattern from a single opening. In any case
It cannot effect the close side lobes but does help diminish the
higher orders.

G. CONVOLUTION8 OF LIKE SOURCES IN ONE DIMENSION

In the following exaxples the convolution usually overlaps. Fig.
19 shows how a uniform line source of width Be can be split Into
a number of sections, each of which is spread out Into a second
uniform line source of width Sb, We will not worry much about the
normalization constant but will usually let g(O) a 1 which Implies
that the ares of f(x) is normalized to unity.

1. TrapesoidaL Illttuination (Fig. 19)

The result of the convolution of Fig. 19 is a trapezoidal ampli-
tude distribution# the two bases being g(b+a) and 3(b-a)o The
diffraction pattern is proportional to the product of the patterns
of the two line sources.

sin au sin bug(u) ,, gist a"
au bu (Si)

Since the numerator cannot exceed unity, the amplitude of the side
lobes cannot exceed a fraction 1/ (abu') of the peak.

I Xt

aubu ab (2?csin 0)s (f)
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Types of f(x) g(u)

g = sin au
(u) au

____ ____ ____ ____ __ r in bil

.•~~u ' l..- IaUl

Fig----ure 20 Tra

| " I I(I" I)

': i:' ,g •(u) si= a

Su sin au sin bu

Figure 19. Trapezoid

Figure 20. Triangle

ca au 2

Figure 21. Gable

,, (It 03I
~go (u) s InauaU

-coo at au in au
au

Figure 23. Step Approximation
fn(x) - (1+W)- 1,4,6,4,1

Figure 23. Chord Approximation

fn(x) - (]L+1)"

FIGURES 19 - :3. CONVOLUTIONS OF UNIFORM LINE SOURCE8
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Thus, the intensity decreases as (sin 0)-4, due largely to the
taper at the ends. Convolutions of three line squrces will de-
crease at an even greater rate.

2. Triangular Illumination (Fig. 20)

When a = b, the trapezoid degenerates to the triangle of Fig. 20

with an overall width of 4a and a pattern

g(u) = Fsin au] 2

au - (63)

3. Gable ILlumination (Fig. 21)

The gable amplitude illumination Fig. 21 is the sum of a triangle
of height A and a rectangle of height B. The pattern is:

A (sin au 1 + B sin 2 au
2 2au (4)

4. Approximation of f(x)*by its VaLue at n Equidistant Points

If an amplitude function f(x) Is listed at n equidistant points

fn(x)p the diffraction pattern gn(u) corresponding to fn(x) will
show strong minima and maxima analogous to the orders of a dif-
fraction grating. In order to keep the errors small the phase
between adjacent points must be kept small. These errors are
partially corrected in the methods described below.

5. Aproximation of f(x) by Steps

In Fig. 22 the amplitude function f(x) is divided into rectangular
steps of equal width 2& and heights fn equal to the value of the
ordinate at the midpoints of the Intervals. The resulting approx-
Imation Is the convolution of the point function fn(x) and the
uniform line source of width 2a, so that the approximate pattern
is the product of the transform of fn(x) and the single slit:

gn(u) sin au
au (68).

The gn(u) is calculated exactly as in the preceding paragraph. The
added factor (sin au)/au Improves the approximation by suppressing
the orders introduced by the grating, fn(x). Fig. 22 is drawn for
the case in which fn(xl is proportional to 1, 4, 6, 4, 1, the
binomial expansion (1+1)-.

6. Approximation of f(x) by Chords

Fig. 23 shows how a function, which is zero at its end points, can
be approximated by a series of connecting chords. These are
equivalent to the convolution of f,(x) and a triangle of width 4a.
The diffraction pattern Is the product

g (u) [ sin au 1
au J (6)
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Should f(x) have end points not zero, say f, and fn, then a
straight line function (A+Bx) connecting f, and f. can first be
subtracted from f(x). The pattern of (A+Bx) is then calculated
Independently and added to the solution (68).

g. FIUCT OF A GAP IN A LINE SOURCE

Occasionally an array Is constructed as in Fig. 24 with a narrow
gap at the center. The effect of the gap Is to Increase the in-
tensity of the first side lobe from a fraction p to a fraction
approximating

(p+q) 2 / (1-q) (67)

where q is the fraction of the area of the amplitude function f(x)
cut out by the gap.

(X)

-0 +0

q f2(x)

Vigo 14 Gap in Array
Ratio of Areas is q

(p "

Fig. 36 Gap Increases First Side
Lobe by Raising Axis

This Is due to the fact that the actual amplitude f(x) of the
array Is the difference of the original function fj (x) and the
gap ft (x). The pattern g2 (u) for the gap Is so broad that it has
the effect of elevating the axis of Fig. 26 by the fraction q,
Sine* the amplitude of the first aide lobe was originally -p, the
now side lobe has a relative -•nplitudo -(p~q)/(1-q), and a rel-
ative Intensity of (p~q)'/(l-q) . The second aide lobe, on the
contrary, is reduced and may even vanish.
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This formula holds exactly when the central point source is
blocked out from an odd-numbered n-point diffraction grating, in
which case q = 1/n. The intensity of the side lobes midway between

2
two orders was previously 1/n . The odd ones are now Increased to
4/(n-1)2 while the even ones vanish. When applied to a 3 point
array the relative intensity of the one and only side lobe in-
creases from 1/9 to 1.

I. INTEGRATION BY PARTS

This method can be employed when there are discontinuities In
f(x) or its derivatives at only a few polnts, xk. Between two
such points, integration by parts yields:

g(u) f(x)e dx = - ' e lux.+D ( ()

On summing over all intervals the contributions cancel except for
the negative difference of Dnf(X), ADnf(X), at each discontinuity.

k lu lu (69))

We have so far ignored the patternzkkeiux due to a set of

radiant points.

Let

F(x) = f(x)dx, (70)

then each radiant point can be considered as a discontinuity in

F(x). Since

f(x) . DF(x)

the complete formula is

g(u) e ' u' A& [1 D +

f u ±U (71)

where Xk is now the position of either a radiant point or a dis-
continuity in f(x). Thus, if DnF(x) is the lowest order derivative
containing a discontinuity, the leading term in g(u) will vary as
1/un and the envelope of the power pattern will vary as 1/utn.
The corresponding condition on f(x) is that Dnf(x) is the lowest
order derivative which becomes Infinite. Usually the lllumination
and its derivatives are continuous except at the ends of the
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i.nterval. If f(x) is also an even function with a range ± 1,

sn + --.. f(1) + cos + f+... (1)

9 PL r") UR'l JP T L1~ (72)

Several examples of Eqs. (71) and (72) are given in Fig. 26

f (x) g (u)
[ I

e +e = 2 cos au
-0 +0

(2) e -e : 2 sin au

-0 +0 lu U

(3) u 2 au 4 (sin au)2

-0 +0 (1U)2 -

o lau "au
14) ae - (e 1)

ia u CIO 2

tk2 sin - p -k_(2;) con.T..k
1I 0 +1 Ll/~)+Cs

Fig. 26 Examples of Diffraction Patterns Derived by Eqs. (71,72)

Examples (I), (2), (3) show discontinuities in F(x) and its first
and second derivatives respectively. (See Eq. 71). The results
In (2) and (3) could also be obtained from (72)o Examples4 and 5
combine two or more orders of discontinuities.

J. SERIES FOR DIFFRACTION PATTERN8

For moderately small values of u it is feasible to expand the *lux

In the Fourier integral in a power series and then to integrate
term by term as follows.

,. Diffraction Pattern g(u) in Terms of Noments of f(x)
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g (u) CC f (X) e~q6rdx .fj+lux + (lux) W~I f dxd

Uff(z)dx + iuf xf(x)dx +...+±"2n Jxnf(x) dx t... (78)
n!

Let us designate by 4k the kth moment of f(x),

4 fzk f(x) dx (74)

Then (78) becomes

g(u) eCik uk 2 2 u, u U4

kI 21 41

lu - U + as- "" (78)

An even function has only even moments while an odd function has
only odd moments. The idea of a moment is common in mechanics* The
zero moment ip is the area ff(x)dx. The center of gravity, cog*,
and the square of the radius of gyration, Ri, of a distribution of
mass points are also simply expressed in terms of moments.

c /g. f xf(x)dx I1 RI* f xy f(x)dx (76)
. 'f (x) dx o 0 'f f(x) dx 1o0

The series (75) converges when f(x) is positive and confined to
the range ± a, for then, Pk & akllo, and the terms of the series do
not exceed those of the series 1oelau, which converges. For the
case when f(x) consists of two points of amplitude J placed at ±
a, Lk = ak and the series (76) reduces to cos au. Again, for
uniform illumination between ± a

a

tk Sr xkdx 2 ak+l

-a k+1 (77)

and

g(u) 2- a- 2 + 2.- a. -4-

2. Series for the Power Pattern P(u) - g(u) g(u)"

The series for the power diffraction pattern is the sum of the
squares of the real and imaglnary series of (75) according to (29)

a(u) io e *.40 18 2 4
9(u) nean@ 4e conjugate of 6(ma)
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Let us assume that i is zero, which is true for an even function,
or for any function whose origin 2s shifted to its center of
grav~ity, (76). On factoring out io

/I ýL 2 2  1 IIL21 4 4 jU
P(u) O€ I - + + . 1 - z

FO 4= , F0. (79)

We may employ the series "

N = -. ogeP(u) = -loge(1-z) = z +(80) ,.

to obtain the power drop N in Napiers. -4- 71

N - 2 2 1- \ O 2 2 P 4 ) U L U 2 + ýL 04 4 42 2 ]

% 4J"U=-tIo +7 ( 1 0'21.o .. IJ...~ 40m-"u 1., 4"1 •° 401lp. I1° '

(81)
The term in parenthesis is a small quantity whch approaches zero
as P(u) approaches the Gauss Error curve e-4L2/,o 0)U. The drop n
in db's is 4.343 times N. / CIq t '4I/

3. Widths of Diffraction Patterns (A N- _ . I

The series method can be employed to solve for the widthsof of

diffraction patterns. On reversing 17 the series (81)

2 ri
u = - N 1 - l

or V

A IN Cl-EN) 82

where A and B are constants. Eq. 82 is an improvement over that in
RL Report T-7 1 which was developed as follows. If 0 is the frac-
tional drop in amplitude measured from the peak, then g(u) in (75)
equals (1-0). If we neglect terms above V2 and solve for u, then

-(83)

If we include the term in ý 4 but assume that it is the same as for
the Gauss Error curve, then the following approximation results
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(~ ~+)(84)

This is equivalent to Eqs. (13) and (98) of Report T-7. In the
following discussion we use T = au.

The several approximate formulas are compared in Fig. 27 for the
main lobe of the patterns for three illumination functions:
(a) two points, (b) uniform Illumination and (c) the half cycle
cosine. The simplest approximation Is PA, based on the Gauss Error
curve. This is fairly good down to half power. Eq. (84), indicated
by ip, lies inside 4A by a fraction which depends only on n.
Although (PO may fit some patterns it cannot compare with the
surprisingly accurate approximation 9AB based on (82). The percent
error in width using (PAB Is shown in Fig. 28. For the case of
uniform illumination the error is less than 0.5% down to 28 db.
Paradoxically, the reversed series (82) is more accurate than the
direct series (81), which in turn is much closer than the original
arithmetic series (79).

+1%

Filg. 28. Percent Error in Width Formula., W =A rn(1-Bn)
For Three Types of Illumanation

4. CaLcuLation of Beau +4dths

The beau width W in radians of a diffraction pattern is approx-
imated by

Wu 2 sir'p (8w)

which is (./.)u. Thus we may .rite

80 1d2-0



W - A n'(x-Bn) - (86)
d (6

where X and the diameter, d = 2a, are in like unites and the
constants A and B are defined as follows

A 0408 a_ ]a [1_ "-9- (87)4 EU20 3 822t 34o7

Table I Constants For Width Formula

Type of 0 j
f (X) Cos i iX

A .306 .529 .702

B .0192 .012 .0079

n 6 25 11

Table 1 lists the constants A and B for use in (88)e The n in the
table is the range in dbs over which the error In width is less
than 0.5%.

Each constant is dimensionlesse. For example# for uniform illumina-
tion, Lk - Bak/(Ic4) and

W - o.M R s. (98)

It is an interesting coincidence that when WO Is In degrees, X In
centimeters and d in feet# that A a 0.995 or approximately unity
Thus

W° (uniform Illutmination) = rn •-•

•. Bean Widths of Convolutions

The pattern of a convolution is the product of two patterns
g, gg, which usually approximates a Gauss Error curve even closer
than does either pattern separately. We can thus drop the B in
(86)o Sinco the second moments are additive, it follows that the
width W of the convolution is related to the widths W, and W9 of
g, and g@ by the expression

1 1 1
-" + (90)

W7 W- We3
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A simple graphical solution is given in Fig. 29.

Fig. 29. Relation Between Widths WO W1 . and W2,

The author wishes to thank Mary Batchelder for the calculations in
Figs. 27 and 28, and Pauline Austin for her careful reading of
the manuscript.

R. C. Spencer

June 30, 1945
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